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A continuous Reynolds-averaged Navier-Stokes large-eddy-simulation turbulence model is derived based on the
Kolmogorov universal energy scaling law in this study. With the continuous model, the eddy-viscosity for small-scale
modeling is calculated with Reynolds-averaged Navier—Stokes equations using a function that is uniquely
determined by the ratio of the resolved small-scale length to the integral length scale. The unified treatment of
Reynolds-averaged Navier—Stokes large eddy simulation could be achieved with this continuous model by
controlling the coarseness of the mesh. The continuous Reynolds-averaged Navier—Stokes large eddy-simulation
model is initially tested with flow past a circular cylinder at the Reynolds number Re = 3900. Both constant integral
length scales and varied integral length scales based on the mixing length are used in the simulations. The mesh
dependence is also studied with both coarse and fine meshes. The comparisons are made and analyzed between
the results with different integral length scales and different mesh sizes. These results are also compared with the
experimental results and Reynolds-averaged Navier-Stokes results. The results demonstrate that with the
continuous modeling, the large eddy-simulation-like simulation can be achieved by solving Reynolds-averaged
Navier-Stokes equations alone. The spatially varied integral length scale is necessary to capture the more accurate

turbulence quantities for anisotropic wall-bounded turbulent flow.

1. Introduction

IMULATION of turbulent flows at high Reynolds numbers is an
important but difficult issue in engineering analysis and design.
Because direct numerical simulation (DNS) is impractical for most
turbulent flows with even the fastest computers today, turbulence
modeling is the only way to resolve the dilemma between computa-
tional cost and accuracy. Reynolds-averaged Navier—Stokes (RANS)
computation and large eddy simulation (LES) are the main
approaches to turbulence simulations with turbulence models [1,2].
In LES, the dynamics of the larger turbulence length scales are
resolved numerically and the small scales are modeled. The vast
majority of LES computations make use of eddy-viscosity based
subgrid-scale models in conjunction with the spatially averaged
Navier-Stokes equations. In this approach, the effect of the
unresolved turbulence is modeled as an effective increase in mole-
cular viscosity. On the other hand, RANS equations are obtained by
time-averaging the Navier—Stokes equations. Most of the unsteadi-
ness is averaged out and the temporal mean quantities are resolved
numerically while the remaining unsteadiness is modeled. RANS
simulations are more affordable than LES; however, their accuracy is
limited and they fail to provide unsteady and statistical information
required in many applications.
The fact that even LES is still computationally prohibitive for
many complex flows of engineering interest (jet and cavity acoustics,
for example) has led to interest in hybrid LES—RANS techniques. In
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these techniques, LES modeling and fine-grid resolutions are
employed only in those parts of the flow domain in which it is
required to capture the unsteady behavior of the flow and to compute
accurate statistics. RANS modeling and coarser-grid resolutions are
employed in the remainder of the flow, enabling considerable savings
in computational cost. For this purpose, the zonal RANS—-LES tech-
niques have been employed in some engineering applications [3-7].
In the zonal approach, LES is only applied in the most important
regions of interest to capture the small scales. In these areas, the mesh
is refined for the LES application. RANS is applied in areas in which
the small scales are not so important and a statistically averaged
flowfield is enough for engineering design and analysis. In these
areas, relatively coarse grids are used for RANS. The zonal RANS—
LES technique has proven to be an effective approach for both
increasing simulation accuracy and decreasing computational cost.
However, the so-called restriction-and-reconstruction procedure to
treat the zonal interface region between RANS and LES is difficult to
implement in simulations involving complex geometries, and it is the
most challenging issue in this approach. Moreover, in aeroacoustic
simulations with high-order numerical schemes, acoustic waves may
reflect from the zonal interface and cause numerical errors. To
remedy the eddy-viscosity discontinuity problem at the interface
between RANS and LES zones, the RANS equations must also be
solved in the LES zone. This entails extra computational expense.
Because of all of these issues, the application of the zonal RANS—
LES approach is limited.

The defects of the zonal RANS-LES approach may be overcome
through the use of a continuous-modeling technique. The main idea
of this concept is to realize a smooth transition from RANS to LES.
The unified RANS-LES equations are solved to obtain the eddy
viscosity. The extent of the resolved scales depends on the mesh
cutoff scale relative to the characteristic large scale of the turbulence.
Therefore, in the coarse-mesh region, fewer turbulence scales are
resolved and RANS simulation is achieved. When the mesh is finer, a
larger range of turbulence scales are resolved and LES is achieved. A
smooth transition between RANS and LES takes place as the
mesh resolution smoothly changes from coarse to fine, eliminating
the difficulties mentioned previously that are associated with
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discontinuities in the mesh and the eddy viscosity. Additional com-
putational savings may be achieved through use of a computationally
simpler pure subgrid-scale model in those regions of the flow that are
fully in the LES regime. Spalart [8], Spalart et al. [9], and Spalart [10]
were among the first to have employed the continuous-modeling idea
in the derivation of the detached eddy simulation (DES) approach,
wherein a RANS simulation is performed inside the boundary layer
and an LES-like simulation is performed in the far wake. The DES
method requires careful mesh adaptation in the so-called gray area
between RANS and LES [11]. Speziale [12] proposed an ad hoc
equation for continuous-turbulence modeling. He introduced a
factor, which is an exponential function of grid size, to rescale the
RANS eddy viscosity to achieve LES in the fine-mesh region. More
recently, a more rational continuous-modeling approach has been
pursued by Hussaini et al. [13]. They obtained, among other func-
tional forms, an exponential function similar to Speziale’s [12]
original function. The simulations performed with the new function
showed the effectiveness of this approach for Kolmogorov flows.
However, the assumptions made in their derivation need further
validation. There are other coupled RANS-LES approaches dis-
cussed by Sagaut et al. [14].

In this paper, a new approach based on turbulent energy spectra is
adopted to derive the continuous-turbulence modeling equation. The
flow past a circular cylinder is simulated to test this approach. This
represents the first time the continuous-modeling approach has been
applied to a compressible, wall-bounded, or fully inhomogeneous
turbulent flow. Because the relationship between the integral length
scale (quantifying the larger energy-containing scales in the turbu-
lence) and the mesh size is what controls the variation from RANS to
LES model in the continuous-modeling approach, this flow provides
an excellent opportunity to study the effect of changes in the integral
length scale from one flow region to another on the behavior of the
continuous model. In the next section, the continuous RANS-LES
equations are derived. The numerical technique and results are
reported in the third section. Conclusions are presented in the last
section.

II. Derivation of a Continuous RANS-LES Model

Based on the assumption of the energy transport, which is local
among all the scales of a turbulent flow, the average energy dis-
sipation is the only parameter that describes the statistical properties
far from the dissipation range. Kolmogorov [15,16] derived a
universal scaling law of energy in the inertial range by dimensional
analysis, E(k) = Ce?/3k™/3. With this energy scaling law, an
intrinsic connection was established between the large scales and
small scales. In the inertial range, turbulent eddies acquire contin-
uous length scales. Consequently, a continuous kinematic eddy-
viscosity model can be derived based on length scale and turbulent
kinetic energy.

In terms of a turbulence length scale / and kinetic energy K,
dimensional arguments dictate that the kinematic eddy viscosity v, is
given by

v, = CK'/21 1)

Assume that the turbulence is isotropic and follows the universal
scaling law for k' < k < k,, asshowninFig. 1. Thus, the preceding
expression is valid for both large-scale (RANS) and subgrid-scale
(LES) eddy viscosity. RANS is the case when k — k', and LES is the
case when k — k,, where k' is the wave number of the large energy-
containing eddies and k is the cutoff wave number of the LES filter
or grid filter. The length scales for RANS and LES are defined as L
and A, respectively. Then for the RANS eddy viscosity, we have

VRANS = CK 2L )
and for the LES eddy viscosity, we have

VLES — CK)A 3)

Ky
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Fig. 1 Relative positions of RANS and LES scales on energy spectra.

The turbulent kinetic energy should reflect the dynamics of all
modeled turbulence scales. Figure 1 shows the turbulence energy
spectrum in the range from the largest eddies £’ with length scale L up
to the Kolmogorov scale k,, where k, — co. RANS corresponds to
modeling all scales from k’ to k,,, and LES corresponds to modeling
scales from the filtered scale k, to the Kolmogorov scale k,. To
determine the modeled kinetic energy for each case, the integration
should be performed through all modeled scales for RANS and LES,
respectively. Therefore, for RANS, taking the integration from &’ to
k,, we have

K, = / ~ E(k)dk @
v
For LES, taking the integration from k, to k,, we have
Ky = / E(k)dk &)
ka

where E(k) is prescribed by Kolmogorov’s universal scaling law as
E(k) = C,e¥3k/3 (6)

Using the relations k' =2m/L and k, =27n/A gives the
following equations:

o0 3C,

K, = / E(k)dk = —* &L @)
27/L 2
o0 3C

K, = f E(k)dk = =L /3 A23 ®)
2n/A 2

We finally derive, from all of the preceding equations, a relation

between vLES and VRANS:

VEES = f(A)VRANS ©
where
A\ 4/3
f(a) = (Z) (10)

Equation (9) prescribes the relationship between the RANS eddy
viscosity and the LES eddy viscosity. The eddy-viscosity ratio is
uniquely determined by a power law of the length-scale ratio.
Because the integral length scale L represents the mean flow
characteristic, a mixing-length hypothesis can be used to calculate
this length scale L. (Note that although this use of a variable integral
length scale accommodates the large-scale inhomogeneity of the
flow, no attempt is made here to deal directly with the commutation
error inherent in the application to inhomogeneous flows of viscosity
formulas derived for homogeneous flows.) The integral length scale
is assumed to be the same as the mixing length. For a far-wake flow,
the mixing length is approximated to be proportional to the half-
width of the wake:
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L = Iy = ad(x) an

According to some experimental data of flow past a circular
cylinder, the value of the coefficient « can be calculated to be around
0.18. And the wake half-width grows according to

8(x) ~ 0.805/x (12)

To make a correction of the length scale at the origination x = 0,
we add a constant to Eq. (11). That is,

Ly =0ab(x) + C (13)

A relation similar to Eq. (10) was derived by Sagaut et al. [14] and
Hussaini et al. [13], by means of a dimensional analysis argument
and other assumptions. Using this relation, the subgrid-scale-model
eddy viscosity can be calculated through the RANS equations. The
RANS model can be either an algebraic model, a one-equation
model, or a two-equation model. The base model used in the current
study is the Spalart—Allmaras [17] RANS model. The continuous
model provides a unified treatment of RANS and LES in turbulence
simulations. As A — L, the RANS eddy viscosity is recovered, and
as A — n, DNS is approached. For LES, A may be chosen to be the
filter width or grid size. In practical applications, A is determined by
the local mesh size. Therefore, a unified simulation of RANS and
LES can be achieved by controlling the mesh distribution throughout
the computational domain.

This development employed Kolmogorov’s scaling law for the
spectral energy distribution, which was used as the means for
determining the change in K with scale and thus defined the nature of
the interpolation between RANS and LES. Alternatives are certainly
possible: an empirical fit to the energy-containing and lower-inertial-
range parts of the energy spectrum, for example, could well be a
better choice for those cases in which practical considerations do not
permit a mesh fine enough for the inertial range. The relationship
between A and grid size is also open to alternatives. The choice here
was guided by the LES limit being essentially the Smagorinsky
model, for which best results have generally been achieved when A is
chosen in this fashion. A continuous model based on different RANS
and LES models, however, might require a different choice.

III. Numerical Results with the
Continuous RANS-LES Model

We consider the flow past a circular cylinder, for which some
experimental results are available. The Favre-filtered, unsteady,
compressible, nondimensional Navier—Stokes equations are solved
in curvilinear coordinates. They are discretized on a multiblock
overset mesh (see Fig. 2) with a fourth-order compact scheme for
spatial differentiation and the Beam—Warming scheme for implicit
time integration. Characteristic boundary conditions are applied at
the inflow and outflow boundaries. The slip boundary conditions are
applied on upper and lower boundaries, and periodicity is assumed in
the spanwise direction. The standard message-passing interface is
used for parallel computations on multiple zones. To maintain the
stability of the scheme, a sixth-order compact filter is applied within
each block. The details of the methodology are given by Uzun et al.
[18.19].

The simulations are performed for Reynolds number 3900 and
Mach number 0.3 on a coarse mesh and a fine mesh. The streamwise,
normal, and spanwise dimensions of the background domain are
40, 20, and 2 diameters, respectively. The inflow boundary is
10 diameters upstream of the cylinder and the outflow boundary is
30 diameters downstream of the cylinder. Both the upper and lower
boundaries are 10 diameters away from the center of the cylinder. For
the coarse mesh, the body-block mesh resolutionis 161 x 81 x 31 in
the azimuthal, radial, and spanwise directions, respectively, and the
wake-block resolutionis 81 x 161 x 31. For the fine mesh, the body-
block mesh resolution is 241 x 81 x 61 and the wake-block
resolution is 121 x 161 x 61. For both meshes, the body block
extends in the streamwise direction from x/D = 0.5 to 1.5 and the
wake block extends from x/D = 1.0 to 10, where D is the diameter
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Fig. 2 Cylinder oversetting mesh.

of the cylinder. For the body blocks of both the coarse and fine
meshes, the normal distance of the first point from the cylinder body
is A, =1x10"* and the mesh size at the outer boundary is
A, = 1.8 x 1072, with a hyperbolic tangential distribution between
the body surface and the outer boundary. For the wake blocks, the
mesh changed from A, =2 x 1072 to 0.1. The mesh is uniformly
distributed in the spanwise direction with A_ = 0.067 for the coarse
mesh and A_ = 0.04 for the fine mesh. Natural instabilities in the
flow initiated an unsteady solution; the imposition of unsteady
forcing or freestream unsteadiness was not required to start the
solution. (Linearly stable flows, such as pipe flows, do require such
techniques.)

To perform a quantitative analysis of the continuous model, both
mean flow and turbulence statistics are compared with experimental
data. The experimental data were obtained by Ong and Wallace [20]
via hot-wire measurements at the Reynolds number Re = 3900. In
the present computation, statistics were accumulated over approxi-
mately 10 vortex-shedding cycles (T'=50D/U,), after the flow
reached a statistically steady state. The flow quantities were also
averaged over the periodic spanwise direction. As can be seen in the
derivation of the continuous model, the integral length scale L is an
important parameter of the model; its influence on the numerical
results is examined in the current study. Both constant L and
computed L based on the mixing-length model will be used in the
computations.

Figure 3a shows the centerline streamwise mean velocity
computed using the continuous model with L = 1.0 and 0.25 on the
coarse mesh. The simulation results are compared with those from
both the experiment and RANS simulation. The centerline mean
velocity given by the continuous model on coarse mesh shows
reasonable agreement with the experimental result in the near-wall
region. The mean velocity value given by the continuous model is a
bit lower than the experimental value in the region downstream of
x/D =4.0. We attribute this difference to the influence of
compressibility and slip wall. Figure 3b shows the transverse mean
streamwise velocity profiles at different axial stations x/D = 1.06,
1.54,and 2.02. Itis observed that the widths of the wake at all stations
are captured well with continuous-model simulations, even though
some differences from the experimental results can be observed for
the peak values, due to the inaccuracy of the centerline velocity. Allin
all, the mean velocities captured by the continuous-model simulation
are comparable with those by RANS computations, with some
improvements in the reverse-flow region. Figures 4a and 4b show the
cylinder wake vorticity isosurface with continuous modeling at
L = 0.25 and RANS modeling, respectively. Obviously, continuous
modeling can capture more delicate vortex structures in the wake.

To compare the turbulence statistics, the Reynolds stresses are
plotted at the stations x/D = 3.0, 4.0, 6.0, and 7.0 in Figs. 5 and 6
with coarse-mesh computations. Figure 5 shows the normal stress
7.y, and Fig. 6 shows the shear stress 7,,. Normal stresses usually
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Fig. 3 Mean streamwise velocity on coarse mesh.
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Fig. 5 Normal stresses on coarse mesh.
reflect the turbulent intensities. From Fig. 5, it is observed that, L = 0.25 at the stations x/D = 6.0 and 7.0. This indicates that the
compared with the experimental data, the normal stress is captured integral length scale L is a spatially dependent variable in the
accurately by the continuous model with L = 0.25 at the stations continuous model. The integral length scale is much smaller in the
x/D = 3.0 and 4.0 and with L = 1.0 at the stations x/D = 6.0 and near-body wake than in the far wake. This is understandable physi-
7.0. The normal stress is overestimated by the continuous model with cally, because the largest eddy size in the near-body wake is smaller

L = 1.0 atthe stations x/D = 3.0 and 4.0 and is underestimated with than that in the far-wake area. Obviously, RANS computations
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Fig. 6 Shear stresses on coarse mesh.

underestimated the normal stresses at all locations because of large
dissipation. The influence of the parameter L on the shear stresses
shown in Figs. 6 is not as significant as on the normal stresses.
L = 0.25 attains better agreements with the experimental results at
most stations. The largest difference between the shear stresses
computed with L = 1.0 and 0.25 is about 30%. A big deviation from
the experimental results can be observed at x/D = 6.0. This may due
to the coarse mesh used for these simulations.

For the simulations on the fine mesh with the continuous model,
both constant L and spatially varied L estimated with the mixing-
length model in Eq. (13) are studied. To compare with the constant L
results, the constant C in Eq. (13) is set to be 0.1 so that the integral
length scale has a value of around 0.25 at near-wake stations x/D =
3.0 and 4.0. Figure 7 shows the mean velocity with L = 1.0, 0.25,
and L,;,. The mean flow results with the continuous model are
comparable with the RANS results on the same fine mesh. The
remarkable agreement with the experimental results for centerline
velocity at L = 0.25 is observed in the reverse-flow region. The wake
width at different stations is also computed accurately. Compared
with those results on the coarse mesh shown in Fig. 3, the agreements
with the experimental results are improved.

Figures 8 and 9 show the normal stresses and shear stresses
computed on the fine mesh. It is observed that the turbulence
statistics are less sensitive to the variation of integral length scale. The
difference in normal stresses with L = 0.25 and 1.0 is relatively
small at the near-wake stations x/D = 3.0 and 4.0. And good
agreement with experimental results is observed at these stations.
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This is likely because the ratio A /L is smaller in large regions of the
flow domain for a given range of L when the mesh is finer; this tends
to make more of the flow solution LES-like and thus more accurate,
but unnecessary computational costs are incurred in those regions in
which the coarse grid was adequate. However, at the far-wake
stations x/D = 6.0 and 7.0, the normal stresses show some irregular
bumps and kinks in the wake center, although the normal stresses
computed with varied L = L ;, demonstrate more regular shapes.
Good agreement with the experiments at stations x/D = 3.0 and 4.0
are also achieved. Some deviation can be observed at stations x/D =
6.0 and 7.0. This may be due to the inaccuracy of the model
parameters used in calculation of the integral length scale. The
agreement could be improved by adjusting the parameters in the
model. Again, the RANS model with the fine mesh underestimated
the normal stresses at both near-wake and far-wake stations, with
more significant dissipation effects observed at those far-wake sta-
tions. The influence of the integral length scale on the shear stresses
in Fig. 9is not as significant as on the normal stresses. However, some
improvements can still be observed with the continuous-modeling
computation by L =L, at the near-wake stations x/D = 3.0
and 4.0.

The discussion of this section gives some indication of the
importance of the determination of the integral length scale on
the solution and the change in the solution as the mesh is refined. The
variable-length-scale concept employed here (using the mixing
length) may readily be generalized for better accuracy. The length
scale implicit in whatever RANS model is being used could be
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Fig. 7 Mean streamwise velocity on finer mesh.
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Fig. 9 Shear stresses on fine mesh.

employed or more sophisticated means for extracting the length scale
from the velocity field itself could be implemented, such as through
the direct computation of the integral length scale. The finer mesh
improved the solution in general, but in some parts of the flow, the
coarser mesh, with its RANS solution, was perfectly adequate and
the finer mesh served only to confirm this fact. In some parts of the
flow, the coarse mesh was clearly inadequate, as indicated by the
lopsided predictions for the shear stress in Fig. 5b, but in other parts,
the solution looked reasonable but differed markedly from the
experimental results (Fig. 3). As always, the final judgment on
solution correctness is up to the experience and insight of the analyst.

IV. Conclusions

The continuous-modeling approach, based on the universal energy
scaling law to bridge the turbulence scales from the large energy-
containing eddies to the small subgrid eddies, may be employed to
successfully simulate the unsteady turbulent flow past a circular
cylinder at Re = 3900. With appropriate mesh resolution, the mean
flow quantities computed with the continuous model agree well with
experimental measurements, even in the reverse-flow region. Com-
parison of turbulent fluctuation statistics with experimental results
indicates that the integral length scale employed in the continuous
model is spatially dependent: a smaller integral length scale provides
better results in the near-body wake region, whereas a larger integral
length scale gives better results in the far-wake region. However, with

refinement of the mesh, the turbulence statistics become less
sensitive to this spatial dependence of the integral length scale. This
is to be expected, because the finer mesh makes the continuous model
more like an LES computation in more of the flow domain. Use of a
spatially varying integral length scale, based on the mixing length,
significantly improves the computational results.
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